
 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Master’s Thesis

Trace-Based Network Emulation

18th April 2005

Thomas Hug
<thomhug@ee.ethz.ch>

Tutor: Dr. Ulrich Fiedler, Rainer Baumann
Supervisor: Prof. Dr. Bernhard Plattner

2

Abstract

The test environment for sensitive network applications needs to be flex-
ible. This is only possible in a lab setting containing a suitable network
emulator. This thesis describes different possibilities for handling network
emulation focussing mainly on emulators running on commodity PC’s. It
was found that none of the available open source emulators are able to
correctly model network dynamics such as long range dependence. The
most suitable existing emulator, NIST Net, was chosen and extended with
a trace reader, which is able to read packet delays from different pregener-
ated sources like real network traces, simulation traces or calculus traces. A
performance evaluation that proves the correct working and the sufficient
speed closes the thesis.

2

Contents

1 Introduction 5

2 Related Work 8
2.1 Dummynet . 8
2.2 NIST Net . 8
2.3 ONE - the Ohio Network Emulator 9
2.4 Conclusion . 9

3 Functionality of NIST Net 10
3.1 IP Packet handling . 10

3.1.1 The Linux protocol stack 10
3.1.2 The NIST Net kernel module 11

3.2 NIST Net’s Fast Timer . 12
3.3 Communication with Command Line Interface 13

4 Enhancing NIST Net 15
4.1 Requirements . 15
4.2 Communication between user and kernel space 15

4.2.1 Memory Mapping . 16
4.2.2 Process File System 17
4.2.3 Device files . 17
4.2.4 Netlink Sockets . 18

4.3 Measurements . 18
4.4 Queueing in the kernel . 20
4.5 Preemption in Linux kernel 2.4 21

5 Enhanced NIST Net Implementation 22
5.1 Trace generation . 23
5.2 Trace file format . 23
5.3 Command line interface . 24
5.4 Data transport user space to kernel space 25
5.5 Queueing in the kernel . 26
5.6 The delay application . 27
5.7 Functional verification of the software 27

3

6 Performance Evaluation 28
6.1 Evaluation Study . 28
6.2 Maximum performance . 29

6.2.1 Results . 30
6.3 Delay precision . 30

6.3.1 Results . 32
6.4 Summary results . 34

7 Applications 38
7.1 Network Applications . 38
7.2 Network Prototyping . 39
7.3 Protocols . 39

8 Conclusion 40

9 Further Work 41

A Tools 43
A.1 txt2bin . 43
A.2 bin2txt . 43
A.3 bindump . 43
A.4 headgen . 44
A.5 pps . 44

B Additional Plots 45

C Assignment 56

D Timetable 59

4

Chapter 1

Introduction

Studying the impact of network dynamics under a wide variety of condi-
tions is essential in order to assess the performance of network sensitive
applications such as VoIP phones or circuit emulation adapters. Network
emulation, i.e. the reproduction of network dynamics ”in a box” (see fig-
ure 1.1), enables engineers and researchers to conduct performance studies
in simple laboratory settings. In many settings, today’s commodity PCs of-
fer sufficient capabilities and performance. However, implementing network
emulation requires

(i) kernel programming to prevent resource consuming user space pro-
cesses from adding additional delays to the emulated network dynamic
and

(ii) correct modeling of key statistical properties of network traffic such as
long-range dependence among packet delays.

All known solutions for network emulation on commodity PCs fall short
on either (i) or (ii). Luigi Rizzo’s dummynet (FreeBSD) [4] works on the
kernel level. However, it falls short on (ii), since dummynet can only do one
of the following:

• add a constant delay to packets

• add the delay that comes from a bandwidth limitation on a single link

• add the delay that comes from weighted fair queuing on a router

NIST Net [1] is a network emulation package that runs as a Linux kernel
module. However, it falls short on (ii), since NIST Net only uses a small dis-
tribution table to generate packet delays. Due to how the table is accessed,
consecutive packet delays are either statistically independent or linearly cor-
related. This inherently leads to short range dependence. The simplest way

5

to cure this and to account for key statistical properties such as long-range
dependence in network emulation is to replay packet delay traces, which
reflect these properties, instead of generating packet delays.

Therefore, this thesis heads towards an implementation of a trace based
network emulator that runs a Linux kernel module on a commodity PC. This
emulator can then replay delay traces that were previously captured with
a network protocol analyzer such a Ethereal [6], produced with a network
simulator such as OpNet [7] or ns-2 [8] or generated by calculus. These
packet delay traces can thus be easily verified to account for key statistical
properties such as long-range dependence.

Primergy

LAN/WAN

device under test device under test

device under testdevice under test

Network emulator

Simple lab setting

Real world

! Power

COL 1 2 3 4 5 6 7 8 1 2 3 6 25 50 8012

100

10

Ether 10/100

! Power

COL 1 2 3 4 5 6 7 8 1 2 3 6 25 50 8012

100

10

Ether 10/100

! Power

COL 1 2 3 4 5 6 7 8 1 2 3 6 25 50 8012

100

10

Ether 10/100

! Power

COL 1 2 3 4 5 6 7 8 1 2 3 6 25 50 8012

100

10

Ether 10/100

Figure 1.1: Network environment

To achieve this, NIST Net was extended with a trace reader that is able
to replay network traces from a trace file.

A data format was defined in order to describe an action to be taken
by NIST Net for each packet. This can result in delaying the packet with
a given delay, duplicating the packet, or dropping the packet. 32 Bit per
packet are used to describe these actions.

To copy the delay information from user space to kernel space, different
methods were evaluated. The process file system showed to be the best
solution concerning performance, complexity, and overhead.

6

NIST Net comes with a command line interface used to control the kernel
module. This interface was extended to support trace files. Besides the
normal add of a flow into NIST Net’s flow table, a process that is responsible
for sending the delay information from the trace files via the process file
system to the kernel, is started per flow.

A buffer architecture in the kernel, which consists of two buffers per flow
in the flow table of NIST Net, is responsible for keeping the delay applied to
the packets by NIST Net and the reloading of the buffers from distracting
each other.

A performance evaluation with focus on maximum performance and pre-
cision shows that NIST Net with our trace reader extension is fast enough
to test sensitive network applications like VoIP or network devices like cir-
cuit emulation adapters. With UDP packets with a size of 54 Bytes and no
payload, the software was able to process 105’000 packets/s. The resulting
precision is below 2 timer ticks of the timer used by NIST Net (∆ 242µsec).

Trace-based network emulation opens a wide area of other applications
than just VoIP and circuit emulation adapters. Streaming applications,
network and wireless protocol testing, and network prototyping are examples
of categories that the enhanced version of NIST Net can be used for.

This report is organized as follows: Chapter 2 describes existing emula-
tors and explains why it was chosen to enhance NIST Net. In chapter 3, the
functionality of NIST Net is described. Enhancement ideas and evaluations
of NIST Net are explained in chapter 4. Chapter 5 describes the implemen-
tation of the enhancement in NIST Net which is tested with a performance
evaluation in chapter 6. Chapter 7 with ideas for possible applications ends
this report.

7

Chapter 2

Related Work

This chapter describes existing emulators. All of the existing emulators fall
short on the correct modeling of key statistical properties of network traffic
such as long-range dependence among packet delays.

2.1 Dummynet

Dummynet is a simple, yet flexible and accurate network emulator that is
part of the FreeBSD firewall functionality in the kernel. It can be built
with minimal modifications to an existing FreeBSD protocol stack, allow-
ing experiments to be run on a stand-alone system. Dummynet works by
intercepting communications of the protocol layer under test and emulating
the effects of finite queues, bandwidth limitations and communication de-
lays. It runs in a fully operational system, hence allowing the use of real
traffic generators and protocol implementations, while solving the problem
of simulating unusual environments. Dummynet allows experiments with
network protocols simply with running the desired set of applications on a
workstation. A FreeBSD implementation of dummynet, targeted to TCP, is
available from Luigi Rizzo [4].

However, the current version has some drawbacks and limitations. It
can only add a constant delay to packets, add the delay that comes from a
bandwidth limitation on a single link, and add the delay that comes from
weighted fair queueing on a router.

2.2 NIST Net

NIST Net is a general-purpose network emulator for emulating performance
dynamics in IP networks. NIST Net is designed to allow controlled, repro-
ducible experiments with network performance sensitive/adaptive applica-
tions and control protocols in a simple laboratory setting. By operating at

8

the IP level, NIST Net can emulate the critical end-to-end performance char-
acteristics imposed by various wide area network situations (e.g., congestion
loss) or by various underlying subnetwork technologies (e.g., asymmetric
bandwidth situations of xDSL and cable modems).

NIST Net is implemented as a kernel module for Linux and uses a com-
mand line interface or X-System based interface to control the application.
In use, the tool allows a commodity PC-based router to emulate numerous
complex performance scenarios, including: tunable packet delay distribu-
tions, congestion and background loss, bandwidth limitation, and packet
reordering / duplication. NIST Net also provides support for user defined
packet handlers to be added to the system. Examples of the use of such
packet handlers include: time stamping / data collection, interception and
diversion of selected flows, generation of protocol responses from emulated
clients. NIST Net uses a timer with a clock tick rate of 8192 Hz [1].

The problem with the current version are the limited capabilities for
modelling network delay. Generated delay values are either independent or
short-range dependent.

2.3 ONE - the Ohio Network Emulator

The Ohio Network Emulator (ONE) works on a Solaris-based workstation.
The user can control various features of the network, such as propagation
delay, queueing characteristics and bandwidth. In addition, the tool inter-
faces with Satellite Toolkit (STK) to emulate variable propagation delays
based on the orbits of satellites. ONE is CPU intensive and runs as a user
space program. It uses Solaris’ clock with a tick rate of 1000 Hz [5].

2.4 Conclusion

None of the described network emulators are able to model correctly the
key statistical properties of network traffic and use at the same time kernel
programming.

NIST Net is considered the most advanced tool and was chosen for an
enhancement.

9

Chapter 3

Functionality of NIST Net

NIST Net [1] is a network emulator and runs as a Linux kernel module.
It extends the functionality of the Linux kernel by adding packet delay,
packet drop, and packet duplicate functions. Packet delays can be constant
or generated according a small distribution table in the kernel. NIST Net
works on a per flow basis and can apply its functions to separate flows which
differ in source and destination IP with their corresponding ports.

In section 3.1, the packet interception by the Linux kernel is discussed.
Section 3.2 describes the buildup of NIST Net’s Fast Timer. Section 3.3
finishes with a description of how the command line interface communicates
to the kernel module.

3.1 IP Packet handling

Figure 3.1 shows an overview of the way a packet travels through the Linux
kernel and NIST Net from the incoming to the outgoing network interface.
The red box is handled by the NIST Net kernel module.

3.1.1 The Linux protocol stack

If a packet arrives on the network interface, it is copied into the queue in
the devices memory. A hardware interrupt informs the kernel code, which
copies the data into a socket buffer (sk buff). The packet is then treated by
the function to determine the layer 3 protocol (eth_type_trans()). The
determined protocol is sent to a function that informs the Linux network-
ing code (netif_rx()). netif_rx() is also responsible to find the layer
3 handler. Next, the packet is sent into a queue per processor, where a
software interrupt request ensures that the correct function picks up the
packet dependent of the result of netif_rx(). In the case of an IP packet,
it is the ip_rcv() function. The initialization routine of the NIST Net
kernel module replaces this Linux IP handler function (all ETH_P_IP Inter-

10

fast_rtc_interrupt()

netif_rx()
notify Linux
networking code

qdisc_run()cpu_raise_softirq()

lt_find_by_ipheader()

other munger?

packet_delay()

fast_timer_list

rcv_packet_munge()

packet_drop()packet_duplicate()

do_fast_timer()

runpacket()

gaze_at_skb()

NIST Net kernel module

Layer3

Layer2

ip_forward()

ip_rcv()

Queue CPU

Interruptcopy

queue in dev’s
memory

socket buffer
sk_buff

determine protocol

eth_type_trans()

dev

RX

dev
TX

Figure 3.1: Embedded NIST Net kernel module

net Protocol packets 0x0800 (Ethernet frame’s protocol field)) with its own
function rcv_packet_munge(). Every new IP packet is handed to the NIST
Net kernel module before ip_rcv() gets called.

3.1.2 The NIST Net kernel module

If the NIST Net kernel module is loaded, the rcv_packet_munge() function
is called when an IP packet arrives. The function first checks whether the
NIST Net emulator is on and whether the packet has not yet been checked
(See 3.2 for explanation for packets arriving a second time). If the emulator
is off or the packet has already been marked by the NIST Net code, the
packet is immediately sent back to original IP handler function.

lt_find_by_ipheader looks up the corresponding entry in the NIST
Net table (see section 3.3), which contains a list with source destination
combinations and their corresponding action (i.e. delay, drop, duplicate).

If there are other munger modules registered in the NIST Net package
(linmunge.o or knistspy.o), they also get executed. The two modules
linmunge and knistspy are used to spy a single point-to-point connection or
to monitor certain traffic. These extensions are not covered by this thesis.

Drop and duplicate are self-explanatory. Delay values due to bandwidth
limitations or customized guidelines are calculated by the packet_delay()

function. All packets that have a delay greater than zero are put on the fast
timer list (See 3.2). This list is a sorted queue of packets which have to be

11

socket buffer
sk_buff

Layer3

Layer2

netif_rx() CPU qdisc_run()

RX
dev

dev
TX

ip_forward()

ip_rcv()

Queue

NIST NetDelay Q

Figure 3.2: Packet interception in the Linux kernel

fast_rtc_interrupt()

lt_find_by_ipheader()

other munger?

packet_delay()

fast_timer_list

rcv_packet_munge()

packet_drop()packet_duplicate()

do_fast_timer()

runpacket()

gaze_at_skb()

NIST Net kernel module

Figure 3.3: NIST Net kernel module

delayed.

The original NIST Net code is only capable of calculating delays based
on random driven lookup tables. Packets with no delay are sent back to the
original handler function for IP packets.

The following section describes the path the packets take from the fast_timer_list
back to the networking part of the Linux kernel.

3.2 NIST Net’s Fast Timer

To apply given packet delays to packets within a packet stream, a fine-
grained timer source is needed. NIST Net uses the MC146818 real-time
clock (RTC) as the timer source. After loading the NIST Net kernel mod-
ule knistnet.o, the init_module() function configures the timer chip to
run at 8192Hz, its highest possible interrupt rate, and registers the func-

12

tion fast_rtc_interrupt() as the corresponding interrupt handler. This
setting allows a tick granularity of approximately 122 µsec [1].

init_module() also allocates memory for the fast_timer_list, the
list that holds all timer entries in it. At startup, 1024 slots for packets are
allocated (36K). The maximum allowed usage is 616K (17344 packets), not
counting the space used up by the skbuffs.

fast_rtc_interrupt() do_fast_timer()

MC146818

Real−time clock (RTC)

run_fast_timer_list()

Figure 3.4: Real-time clock (RTC)

Every function call of the interrupt handler calculates the new expires
value and sets it if required. It is required only when it is not already
set. Finally, the do_fast_timer() function is called, which checks and
adapts the number of lost miniticks (interrupts by the RTC) and runs the
final scheduler function run_fast_timer_list(). The scheduler checks for
expired packets in the fast timer list, detaches the expired ones and put
them into a run queue.

Every packet on the runqueue is then marked as processed and sent back
to to the Linux kernel’s netif_rx() function.

3.3 Communication with Command Line Interface

The NIST Net module uses a character device for its communication with
the user space. A character device is a device file used for communication
purposes between user space and kernel space. This character device is
registered within the kernel with a major number, which is used for the
unique identification by the user space.

For every character device there are pre-defined generic functions (open,
read write, release, ioctl, ...), which can be used by the user space. While
registering the character device by the kernel, also the correspondent kernel
function for each of the needed pre-defined generic functions will be regis-
tered. If the user space executes an open syscall on a character device, the
corresponding user open function, which is registered during the initializa-
tion of the module, gets called.

Besides the self-explanatory functions like open or release that perform
the initializations and management, other functions like read is used to read
out the whole NIST Net table (see below) from the data structures in the
kernel and write is used to handle packet distribution tables.

13

Ioctl (short for Input Output ConTroL) is of importance for NIST Net.
Every control action is handled by the ioctl function of the character device.
It can be used to switch the emulator on or off, control debugging, flush
tables, gather statistics, and/or add/remove entries to the NIST Net table.

The NIST Net table is the most important part in the kernel module. It
contains a list of all information as to how IP packets have to be treated. For
every table row in the CLI, there is a corresponding entry in the NIST Net
table in the kernel. This entry consists of a source and destination IP ad-
dress, delay time, delay sigma, bandwidth limit, drop probability, duplicate
probability, DRDmin, DRDmax, and DRDcongest (see [1] for explanations
of DRD).

Whenever data is to be transferred from user space to kernel space in
order to update the NIST Net table or gather statistics, only a pointer to
a struct in the user space is sent to the ioctl function. The ioctl function
in the kernel then copies the data via copy_to_user or copy_from_user

between kernel and user space. The reason for the need to invoke these copy
functions is described in section 4.2.

14

Chapter 4

Enhancing NIST Net

4.1 Requirements

NIST Net [1] falls short on being able to model correctly some key statistical
properties such as long-range dependence. This is because it makes use of
only a small distribution table when generating packet delays. In order too
avoid this problem, NIST Net’s functionality needs to be enhanced to be able
to use pregenerated delay values. The enhancement should provide NIST
Net with the capability to replay packets from pregenerated trace files. It
is assumed that the maximum speed of a packet stream running through
NIST Net is 100 MBit/s.

Because NIST Net is running as a kernel module and trace files are
stored in user space, a suitable and ”fast enough” transport from user space
to kernel space has to be found. An intelligent queueing algorithm within
the kernel should satisfy acceptable latency for fetching packet delays for
passing packets.

This chapter deals with the different types of communication between
user space and kernel space and proposes a queueing algorithm to use within
the kernel. A short discussion about preemption in Linux 2.4 kernels ends
the chapter.

4.2 Communication between user and kernel space

Memory Mapping, Process File System, and Character Devices are discussed
in the following subsections. Socket communication is only mentioned as an
option, but not discussed in detail.

ProcFS and Character Devices both take advantage of copy_from_user
while Memory Mapping accesses the data directly. The reason for the need
to invoke these copy functions lies within the fact that Linux memory is
segmented. This means that a pointer does not reference a unique location
in memory but only a location in a memory segment. The kernel needs to

15

know which memory segment it is to be able to use it. There is one memory
segment for the kernel and one for each of the processes.

4.2.1 Memory Mapping

The kernel sets up a special memory region that is associated with some
portion of either a regular file in a disk-based file system or a block device
file. Each access to a byte within a page of the memory region is translated
by the kernel into an operation on the corresponding byte of the file.

The memory manager stores a mapping of virtual to physical addresses
on a per-process basis, and also stores additional information on how to fetch
and replace particular pages. This information is stored in a memory-map
data structure that is stored in the process scheduler’s task list.

Two kinds of memory mapping exist. Shared memory mapping and
private memory mapping. Shared memory mapping is used when multiple
processes access the same region. As soon as a process writes into a page
of shared memory, the changes are visible to all other processes that map
to the same file and the page on the disk is changed. With private memory
mapping there is only one process writing and one or more reading. This
kind of mapping is therefore more efficient because the pages have not to be
immediately written to the disk if the process writes to the mapped memory.

mmap (caddr_t addr, size_t len, int prot, int flags,

int fd, off_t offset)

mmap() can be called from user space or from kernel space. The max-
imum amount of virtual address space available on 32 Bit systems for a
process is 3GB, the remaining 1GB is reserved for the kernel. These limita-
tions come from the fact that a 32 Bit system can only address 4GB. Note
that the partitioning can be changed with a kernel patch to i.e. 2GB/2GB.

mmap() within the kernel demands the allocation with vmalloc() of
memory first. Since vmalloc() is limited to the size of RAM, this is probably
less than 3GB in user space.

The VM_LOCKED flag prevents the memory area from being swapped out.
This is especially important if a user space process writes to a region of the
kernel.

mmap() is faster than the other methods because there is no need of
copy_from_user. But since the maximal size is fixed and the part of the
region that is read next has to be in memory, memory mapping is complex to
handle. If it is not possible or too complex to guarantee that the part of the
region that is read is in the memory, it is mandatory to use non-swappable
buffers inside the kernel. This gives memory mapping more disadvantages
than advantages.

16

4.2.2 Process File System

The Process File System (procfs) is a special file system (/proc) in the
Linux kernel. It is a virtual file system, which is not associated with a block
device and exists solely in memory. The files in the procfs allow user space
processes access to certain information from the kernel. It is used for process
information, debug, and configuration purposes.

Instead of reading (or writing) information directly from kernel memory,
procfs works with call back functions. As soon as a user process reads or
writes to a file in /proc, a dedicated function is called. These functions can
be registered for every file in the procfs after creation.

The following struct of a procfs entry shows the two handler functions.

struct proc_dir_entry* entry;

entry->read_proc = read_proc_foo;

entry->write_proc = write_proc_foo;

While a read from the procfs simply invokes the sprintf function in the
kernel to send data to the user space, a write operation to the procfs is
more complicated. Because the process accessing the procfs is normally in
the user space, the write function for the corresponding procfs entry has to
invoke the copy_from_user() function first.

An example that demonstrates the concepts and functions of procfs can
be found in the process file system guide [3].

A write operation to a file in the procfs invokes the registered write_proc

function. The most important arguments are a pointer to a buffer in user
space and the size of the buffer. If the amount of data is too big for the
handler function, it can just take a part of the data and return a lower value
than the size of the whole buffer. This forces the kernel to call the handler
function again with the rest of the data. The user space process that feeds
the data to the kernel has not to care about buffer overflows. The kernel
provides a buffering functionality already.

4.2.3 Device files

Kernel modules can register device files that are able to be used to com-
municate with the user space. A list of the major numbers of the devices
that the kernel can handle is available in the file /proc/devices. All func-
tions for the possible device operations (open, release, write, read, ioctl)
are registered within the module. If a user space process opens the device
file, the corresponding function is executed. Commands like ioctl (short for
Input Output ConTroL) take arguments and it is therefore possible to hand
a pointer to the kernel from the user space and transfer data to kernel space
if the ioctl function in the kernel invokes the copy_from_user function.

17

In
te

rr
u

p
t

S
ys

ca
ll

Kernel space

User space

co
p

y_
fr

o
m

1 2 3

Figure 4.1: Signalling

The communication from kernel space to user space is handled by inter-
rupts.

4.2.4 Netlink Sockets

Netlink is used to transfer information between kernel modules and user
space processes. It provides bidirectional communication links and consists
of a standard socket based interface for user processes and an internal kernel
API for kernel modules. It was made for communication signals and not for
the transport of big amounts of data. It is therefore not considered to be an
option.

4.3 Measurements

User space

Kernel Space

File Memory

Procfs Chardev /dev/null

Figure 4.2: Ways to copy data

To find the suitable communication method, this section evaluates the
data transfer rate of the procfs and device file alternative. Mmap isn’t
further tested because it’s higher complexity for this purpose.

The tests were processed on a Dell Precision 340 Workstation with an
Intel P4 2.0 GHz, 512 MB RAM and a 40 GB Hitachi Deskstar 120GXP
running Debian Sarge with Kernel 2.4.27.

Two sample kernel modules have been programmed to support the tests.
Figure 4.2 shows an overview of the alternatives that have been evaluated.

18

The focus was set to the direction from the user space to the kernel space,
because this is the dominant one.

The task was to copy 1 GB of data from the user space to the kernel
space. For each of the two methods, a kernel module was programmed that
copies the data that is fed in, into a buffer inside the kernel. Additionally,
the same test was repeated with the /dev/null device.

The test file was read sequentially from the hard disk. The measurement
results in figure 4.3 show, that all three methods use almost the same amount
of time to complete the task. The reason lies in the fact that the hard drive
operates at its maximum speed and builds the limit.

The worst case used 38.26 seconds to copy 1 GB of data, which is a
minimum speed of 219.25 MBit/s. With the defined trace file format (see
section 5.2), a packet delay uses 32 Bit. This results in a theoretically
calculated packet rate of 6.85 Mio packets/s. Because the size of an IP
packet (including minimal UDP header and 802.3 header, see figure 4.4)
without payload is 54 Bytes, the theoretically processing speed with this
packet rate is 2.95 GBit/s.

Procfs Device files /dev/null

Average 36.91s 37.29s 37.29s

Std. deviation 0.37s 0.27s 0.39s

Max 37.79s 37.70s 38.26s

Min 36.54s 36.72s 36.80s

Figure 4.3: Results for 10 measurements of copying 1 GB of data

802.3 IP UDP CRCPayload

22 20 8 4 Bytes

54 Bytes + Payload

Figure 4.4: IP packet with UDP header

The implementation for copying data from user space to kernel space
doesn’t depend basically on the chosen alternative. Both alternatives have
nearly the same data rate. The bottleneck arises from hardware limitations.
Nevertheless, because the additional resources for handling IP packets were
not taken into account for, the measured data and packet rates in these tests
are not significant.

Figure 4.3 shows a summary of the communication techniques. Mmap is
the fastest, however, it is not very flexible since it is most complex to han-
dle. With the additional complexity it has also the most overhead. Procfs
and device files are fast enough and are not too complex. Netlink sockets

19

Mmap Procfs Device files Sockets

Performance ++ + + +

Complexity - - - - - - - -

Overhead - + + -

Figure 4.5: Summary of the communication techniques

weren’t further tested. Since Procfs has less complexity than device files, it
is considered the best option to use.

4.4 Queueing in the kernel

ProcFS

Buffer 2

Buffer 1

User space

Kernel Space

Signal
Packet munger

process

User space

handlerfunction

ProcFS

Figure 4.6: Queueing and data transport

The target of the queueing mechanism in the kernel is to provide fast
access to trace file data for the NIST Net packet munger functions. A fast
access without cache misses is needed to satisfy the needs of a near real time
system. Every incoming IP packet that belongs to a connection in the NIST
Net table uses 32 Bit information from the trace file to be treated.

To provide the ability to read with a constant data rate out of a buffer, a
special queueing mechanism is needed. Since the data to be used originates
from the user space, an intelligent coordination system must satisfy the
availability of uncached data in the kernel.

Fast access to data is possible if the data is first copied to a buffer
inside the kernel space. The data stream remains un-interrupted when two
buffers are used and refilled alternately or when a ring buffer is used. Both

20

possibilities require that background jobs refill while the packet munger
function of NIST Net takes data out of the buffers and empties them. While
a ring buffer additionally needs a complicated coordinated handling between
the reader and the writer. Therefore, it is much easier to use two buffers
instead of the more complex ring buffers.

4.5 Preemption in Linux kernel 2.4

A preemptive operating system is able to stop any process at any point
and reschedule it. The Linux kernel 2.4, as it is used for NIST Net, is
non-preemptive for kernel tasks. The scheduler is in this case not able to
reschedule a task while it is running in the kernel space. Kernel code is
scheduled cooperatively, not preemptively. Kernel code runs until it finishes
(returns to user space) or explicitly blocks. It isn’t possible to preempt a
task at any point.

With Linux kernel 2.6, preemption is possible when enabled as an op-
tion. However, rescheduling is only possible while the kernel is in a ”safe to
reschedule” state.

It is therefore recommended to do as less as possible in kernel space to
satisfy the priority of the important tasks like treating IP packets. Open
files directly in kernel space is not an option.

21

Chapter 5

Enhanced NIST Net

Implementation

This chapter describes the enhancement of NIST Net with the trace reader
extension. Different parts are discussed separately, namely the trace gener-
ation, the trace file format, the command line interface, the data transport
from the user to the kernel space, the queueing in the kernel, the delay
application, and the functional verification of the software.

Queue

Queue
dev
TX

RX
dev

NIST NetDelay Q

Delay list

Real traces
Simulation
 traces

Calculus
traces

Kernel space

Queuenetif_rx

Layer3

Layer2

Functional unit

offline generated

User space

Interrupt

ip_forward

ip_rcv

sk_buff

socket buffer

Figure 5.1: Enhanced NIST Net

Figure 5.1 shows the NIST Net kernel module with the additional parts
in the user space and the different types of trace files possible. The kernel
space section in the figure was described in section 3.1.2.

22

5.1 Trace generation

Three possibilities for generating trace files are shown at the top of figure
5.1. These traces are generated by real network probing, network simulation,
and calculus. The actual generation of the traces themselves goes beyond
the scope of this thesis and is not discussed here.

5.2 Trace file format

The trace file format covers the coding of information that comes from offline
generated traces like packet delay, drop, and duplicate in a binary delay list.
This binary delay list is then copied from the user space to the kernel space
as seen in figure 5.1.

The determination of what type of the packet has to be fast. The coding
is optimized to be used in combination with bit masks. This is known to be
very fast.

The information for one packet consists of 32 Bit of data. Two bits are
used to distinguish between a delayed packet (00), a dropped packet (01),
and a duplicated packet (10). The left over case (11) is not used. One bit is
used for the sign. Because of the simplicity, only signed integer values are
used. The remaining 29 Bits represent the delay value. Triplicated packets
have not their own coding because it is the same like two duplicated packets
consecutively (see section 5.6).

031 30 28

Delay value (29 Bit)

Delay value

Sign (ignored) (1 Bit)

Packet action coding (2 Bit)

Figure 5.2: Data format

Code Description

00 Normal packet

01 Drop packet

10 Duplicate packet

11 (not used)

Figure 5.3: Packet action coding

According to section 3.2 a timer tick is around 122µsec. Because the

23

time available for calculations is limited inside the kernel, it is considered
to be faster to store the delay values already in a kernel compatible format.
Since NIST Net makes these calculations for itself with usec_to_minijiffy

in its packet_delay function, it is simpler to make use of this functionality
and have the values stored in µsec. Additionally, µsec is portable because it
is an absolute measurement that is the same on every architecture and on
every processor

As already previously described, NIST Net uses a tick granularity of
122µsec. Using µsec for delay values allow the description of values from 0
to 536.87 seconds. This is more than enough since delay values usually do
not exceed 1 second.

5.3 Command line interface

Figure 5.4 displays the entire trace reader extension. This section describes
the controlling part, the command line interface (CLI). The other parts are
treated in following sections in this chapter.

PID
P1

dev dev

DeviceUser space

Kernel space

procfs

CLI: Command Line Interface

procfs: Process File System

Trace
Files

User PID

Flow ID

Buffer 1

Buffer 2

NIST Net Kernel Module

Flow Table

TXRX

NIST Net

CLI

Tracer Reader Extension

Figure 5.4: Trace reader extension

The original CLI is used for controlling the NIST Net kernel module, as
soon as it is loaded. It enables/disables the entire module and adds/removes
entries to/from the flow table in the module. The flow table contains an
entry, one for each flow defining IP source/destination pairs with their ports
and the actions to be applied on the matching packets.

Our enhanced implementation of NIST Net supports trace files. The
additional action allowing a flow to get the delay values from a trace file is
also controlled by the CLI. If a filename is given as an option when adding
a new entry to the flow table, the CLI starts a process and allocates a

24

buffer environment in the kernel beside the normal procedure of just adding
the source/destination pairs to the flow table. The started process that is
sending data to the kernel space is called flow seed process.

When removing an entry from the flow table, the corresponding flow seed
process is killed and the buffer environment in the kernel is deallocated.

The CLI can also be used to dump the flow table into user space. To see
the buffer-status, a read call to /proc/nistnet/input provides information
of about 20 internal counters for debugging. A write call to the same file
resets the statistics.

5.4 Data transport user space to kernel space

The data that is stored in trace files, the format is described in section 5.2,
is transported to the kernel space. The data transport is the part between
the trace files and the kernel in figure 5.4.

As described in the previous section, the CLI starts a new flow seed
process as soon as a new flow is entered into the NIST Net flow table. This
process reads data out of a trace file, which has a size similar to a buffer in
the kernel. A procfs write call fills therefore, an entire buffer.

During initialization, both buffers are filled. The starting of the flow
seed process incorporates the filling of the first buffer. The first buffer then
changes to the ”ready” state. Because the second buffer is still empty, the
flow seed process continues with a second procfs call that sends the same
amount of data as it did with its first call. After that, both buffers are in
the ”ready” state and the kernel sends a SIGSTOP signal to the flow seed
process, which keeps it from sending further data.

Since syscalls, like the write call to the procfs, are blocking, the SIGSTOP
signal for the flow seed process is set before the process returns from the
write call. The process stops suddenly as soon as the write call returns.

The procfs handler function in the kernel needs to know the process id of
the flow seed process to send signals to. It also needs the corresponding flow
id to determine which flow buffer the flow the data is for. This information
is attached to each ”package” that is sent to the kernel. Figure 5.5 illustrates
such a ”package” with several 32 Bit values in the first part, followed by the
flow id and the process id.

PIDFlowID

4 Bytes 4 Bytes

Trace data

32 Bit per packet

Figure 5.5: Data package with flow id and PID

The number 32 Bit values in a ”package”, containing packet action and
packet delay, is usually above 1’000 packets. Further information can be

25

found in the Evaluation tests in Chapter 6.

5.5 Queueing in the kernel

Section 4.4 introduced how queueing is used and explained the reason why
two buffers are used. This section explains how these buffers are imple-
mented.

Since the enhanced NIST Net kernel module supports multiple flows
in parallel, there is one buffer environment per flow. Figure 5.4 shows the
buffers in the kernel space. Figure 5.6 shows one of these buffer environments
in detail.

Refill

Ready Empty

Active

Refill

Ready Empty

Active

User space

process

munger

Packet

Buffer 2Buffer 1

Figure 5.6: Alternately selected buffers

Section 5.4 described the process of initially filling the buffers once a new
flow was added to the flow table by the CLI. Both buffers are in ”ready”
state after their initial load and may be used by NIST Net’s packet munger
function. A buffer pointer in the buffer structure points to the first buffer.
Packet delays are read from the first buffer until the last packet in this
buffer. After fetching the last packet of one buffer, the buffer pointer changes
to the second buffer. The first buffer changes to the ”empty” state, and
the function sends a SIGCONT signal to the flow seed process in the user
space of the corresponding flow in order to start the refilling. While the
packet munger reads from the second buffer, the flow seed process sends a
”package” to the process file system and the first buffer gets reloaded. Then,
a SIGSTOP signal is sent to the flow seed process to prevent the process
from sending more data. After finishing the reload process, the first buffer
is again in the ”ready” state. As soon as the second buffer becomes also
”empty”, the reload procedure repeats.

26

5.6 The delay application

The delay application is the last part in figure 5.4. It is the connection
between the two kernel buffers and the NIST Net kernel module. Each
packet that passes the NIST Net kernel module and matches a flow in the
flow table attached to the trace reader extension, gets its delay value from
trace data in a buffer. A matching packet allows the packet munger to call
a function that decodes the action (delay/drop/duplicate) and the actual
delay value from the 32 Bit value read from the buffer. The resulting action
and delay value is then applied to the packet.

If a packet is to be duplicated, the whole sk buf is copied and processed
right after the original packet. Because the packet munger function is called
a second time, the duplicated packet can have its own action and delay,
different to the one of the first packet. Therefore, a triplicated packet can
be generated with adding two duplicated packets consecutively.

5.7 Functional verification of the software

The extended version of NIST Net is able to make use of multiple flows. The
CLI allows an operator to add and remove flows to a running system. The
following tests are used to check as to whether the CLI works as it should and
if the input is correctly applied to the flow table. Special attention was made
to the extended part, the trace reader and its flows, when creating test cases.

Evaluation:

1. Add table entries with trace files

2. Update table entries with trace files

3. Remove table entries with trace files

4. Add/update/remove flows multiple times

5. Add/remove the same flow twice

All tests were completed successfully.

27

Chapter 6

Performance Evaluation

This chapter describes the performance analysis of the enhanced version of
NIST Net. The steps for a performance evaluation study were processed as
listed in Raj Jain [9].

Two evaluation studies build the main part of this chapter. The maxi-
mum performance test evaluates the maximum amount of packets that can
be processed by NIST Net without error and the delay precision test eval-
uates the difference between a given and measured delay. The performance
limitation of the tests is given by the hardware setup of the NIST Net box.

6.1 Evaluation Study

The goals of the study are to find the

1. Maximum amount of packets processing

2. Delay precision

3. Correct working of the software

The maximum number of packets that can be stored within the kernel
is also of interest. With a limitation of a maximum delay of one second and
a theoretical maximum network speed of 100 MBit/s, the machine must be
able to store 12.5 MByte of packet data. Since todays machines have at
least 512 MB RAM or even more, it is absolutely no problem to deal with.

The tests were processed on a Dell Precision 340 NIST Net machine, Intel
Pentium 4 CPU 1.80 GHz, 512 MB RAM and a 40 GB Hitachi Deskstar
120GXP running Debian Sarge with Kernel 2.4.27. Both network interface
cards were 3c905C Tornado cards from 3Com Inc.

28

6.2 Maximum performance

The goal of a maximum performance test is to evaluate hardware limitations.
A delay of 121µsec according to the minimal tick period of the timer used
by NIST Net guarantees that all NIST Net functions are processed at least
once for each packet.

Two factors can be adjusted during the tests, the sender’s packet rate
and the flow buffer size in NIST Net. Two metrics are used to determine the
maximum speed of a given flow buffer size. As soon as packets are dropped
or the NIST Net flow buffers can not get refilled, the test fails.

Factors 1. Packets/s
2. Flow buffer size

Metric a. Buffer under run
b. Drops

Source Host Enhanced NIST Net

Figure 6.1: Evaluation Setup

Figure 6.1 shows the evaluation setup with two boxes. The source host
sends a constant packet rate to the NIST Net box. With a network interface
speed of 100 MBit/s and a minimum IP packet size of 54 Bytes (figure 4.4),
a packet rate of 230’000 packets/s is the theoretical maximum.

Evaluation procedure:

1. 230’000 packets/s. Stop evaluation if no drops occur.

2. 0 - 230’000 packets/s. Evaluate beginning of occurring drops.
Flow buffer size: 32 Kb (8192 packets)

3. 0 - 230’000 packets/s
Flow buffer size: 16 Kb

29

4. 0 - 230’000 packets/s
Flow buffer size: 64 Kb

6.2.1 Results

The configuration is able to process 105’000 packets/s.

Packets/s CPU Given NIST Net Packet Packet
Load Delay Underrun Drops

50’000 48% 121µsec on no no

100’000 89% 121µsec on no no

105’000 92% 121µsec on no no

110’000 96% 121µsec on yes yes

100’000 70% 0µsec off

110’000 75% 0µsec off

Figure 6.2: Results of maximum performance test

Packet rates above 105’000 packets per second do not work because of
the heavy machine load. It makes it impossible to reload new packets in
the buffers of the kernel. Kernel tasks such as interrupts always have higher
priority than user level processes, therefore even processes with the highest
priority do not get executed when there is too much work inside the kernel.

The tests with different sizes of flow buffers had no effect on the maxi-
mum possible packet rates and therefore are not listed. The reason for buffer
under runs and drops is that the reload of the buffers is missing. The size of
the buffer doesn’t influence the fact as to whether or not a buffer is reloaded.

The total CPU time used without an interaction of NIST Net is shown
below the double line in figure 6.2. These tests show that most of the time
used is for handling interrupts, layer 2 and layer 3 processing before a packet
finally enters the NIST Net code. Therefore the maximum amount of packets
that can be processed depends highly on the hardware configuration used.

6.3 Delay precision

The delay precision tests measure the resulting variance added by NIST
Net if NIST Net is for example used as a router. They also measure as to
whether the added delays correspond to the ones given in the trace file. The
controlling factors of these tests are the packet rate and the delays in the
trace file to be added. The measuring metric is the delta of the delay.

30

Factors 1. Packets/s
2. Delay in trace file

Metric a. ∆ of delay

Source Host Enhanced NIST Net Destination Host

Figure 6.3: Evaluation Setup

Delay[ms]

1000ms

1s 20.7s 1s

Time[s]

10s

Figure 6.4: NIST Net evaluation

As seen in figure 6.3, an evaluation setup is used to process the tests. A
source host sends data through a NIST Net box to a destination host. The
sender and receiver are configured to use the NIST Net box as a default
gateway and NIST Net itself is configured to forward packets between its
interfaces.

The sender host sends an E1 stream with a constant rate of 8’000 pack-
ets/s in each test. The UDP packets (figure 4.4) have, including the payload
of 32 Bytes, a total length of 86 Bytes which results in a network speed of
5.504 MBit/s [10].

The sending application is based on Real-Time Linux and writes a se-
quence number and timestamp in the 32 Byte payload of the UDP packet.
The receiver host, which is also running Real-Time Linux, adds its own
timestamp to the packet. Finally, an application on the receiver host dumps
all packets into a file. This measuring application has a precision of 3µsec.

31

Once finished a single test, an especially for this task written software,
evaluates the dump files, calculates the delay variance, and verifies the cor-
rectness of delays compared to the given delays in the trace file.

Evaluation procedure:

1. NIST Net off

2. NIST Net on, delay const 0 µsec

3. NIST Net on, delay const 121 µsec (one tick)

4. Delay times according figure 6.4

(a) One second with 0 delay to calibrate the measuring hosts

(b) Rising delay times, 10 packets per 121 µ sec tick

(c) Falling delay times, 10 packets per 121µ sec tick

(d) Fast changes to test the reordering of packets within the NIST
Net Fast Timer List

5. Trace from network probing (multiplied by 10 because of too small
granularity of NIST Net)

Only one pattern like the one in figure 6.4 was tested because of the
limitation of the scope of this thesis. The delay is bound by a maximum of
one second.

6.3.1 Results

The first test (figure 6.5) displays the delay generated by simply forwarding
packets between two network cards. NIST Net is disabled and the kernel
module is not loaded. The majority of the packets is forwarded without any
distraction and has a low delay. The accumulation just above the majority
results from the interrupt architecture. The network interface has not the
highest priority and routines handling the packets get interrupted and de-
layed. The rest of the packets are randomly distributed and get more delays
because of scheduling routines of the Linux operating system.

Figure 6.6 is similar to figure 6.5 except for the NIST Net kernel model
that is loaded. Packets enter the NIST Net code but leave directly because
the delay is set to 0µsec. Nevertheless, the packets path through the kernel
is longer and the chance that the processing functions get distracted by a
higher prioritized interrupt handler is higher. Therefore, the borders be-
tween majority around zero are not as sharp as without the loaded NIST
Net kernel module.

32

Figure 6.5: NIST Net disabled - IP forwarding delay

Figure 6.7 adds a delay of 121µsec to each packet passing through the
NIST Net box. The majority of the packets get a delay error between -
121 and 0µsec. All other packets get a random delay error as explained as
a result from previous tests. The negative error results from the method
that the timer in NIST Net is used. Packet delays get rounded off to the
next timer interrupt. If a packet arrives just 1µsec before the next timer
interrupt, the packet is sent to the queue for that interrupt. This results in
a delay error of -120µsec. If the packet arrives just after a timer interrupt,
the delay error is almost zero. Nearly zero means that the packet is delayed
until the next interrupt, namely 121µsec.

Figure 6.8 shows the delay configuration for the test with increasing and
decreasing delays according to the evaluation plan.

Figure 6.9 reflects the delay error resulting from using the delay config-
uration in figure 6.8. First, one can see the outstanding runaways resulting
from the delay raises that are almost exactly as long as one timer tick. Be-
cause the timer tick is not always exactly 121µsec, the time runs through the
border of one tick. The same effect can be seen in figure 6.7. Furthermore,
notice how the average number of the delay errors is smaller in the middle of
the figure where the delay is big. This occurs because a number of packets
are stored in NIST Net’s timer queue. A bigger effort is needed to update
the hash tables.

33

Figure 6.6: NIST Net delay set to 0µsec - IP forwarding delay

Figure 6.10 uses the same pattern as 6.9, but with a 122µsec raise instead
of 121µsec. This forces the time to run through the border of one tick and
displays the effects previously described.

Figure 6.11 shows a trace from real network probing. The delay values
are multiplied by 10 because the original trace is almost as small as the
precision of NIST Net.

The delay error of the configuration in figure 6.11 is shown in figure 6.12.
The visible effects with the different interrupt levels and the negative delay
errors have already been described for previous figures.

Appendix B includes the plots of all measurements including additional
ones and the ones described in this section. Also, the mathematical calcu-
lations like average, standard deviation, maximum and minimum are listed
in a table (see figure B.1).

6.4 Summary results

These tests prove a method to correctly apply delays to packets. The delay
error has a precision of two ticks (242µsec) and is sufficient.

34

Figure 6.7: NIST Net delay set to 121µsec (1 tick) - Delay error

Figure 6.8: Pattern - 10 packets per 121µsec raise - Delay config

35

Figure 6.9: Pattern - 10 packets per 121µsec raise - Delay error

Figure 6.10: Pattern - 10 packets per 122µsec raise - Delay error

36

Figure 6.11: Trace from network probing (1) multiplied by 10 - Delay config

Figure 6.12: Trace from network probing (1) multiplied by 10 - Delay error

37

Chapter 7

Applications

Trace-based network emulation opens several new possibilities for appli-
cations/network devices. Real time applications like Voice Over Internet
Protocol (VoIP) and video/audio streaming or network devices like Circuit
Emulation Adapters demand a predictable network connection. These real
time applications and devices need guaranteed Quality of Service (QoS).

Using a network emulator is one way to verify the robustness of an appli-
cation. A trace-based emulator can provide ”what-if” testing in a laboratory
environment and the ability to create reliable, repeatable and standard test
configurations for applications and devices.

Applications can be categorized in network applications, network proto-
typing, and protocols. The applications for each category are described in
the following sections.

7.1 Network Applications

Figure 7.1 shows several network applications with different requirements.

Common applications like Internet browsing, data transfers, and E-Mail

Traffic Bandwidth Relative delay Time Factor
requirement Tolerance

Internet browsing 128 - 1 MBit/s High Buffer tolerant

Data transfer 128 - 1 MBit/s High Buffer tolerant
(E-Mail, Files)

Chat (text) 28 KBit/s Low Low tolerance

Voice (phone) 64 KBit/s Extremely low Real time

Voice (conference) 1 MBit/s Low Real time

Voice & Video 5 MBit/s Medium / Low Real time

Video Streaming 256 - 1 MBit/s Low Buffer tolerant

Figure 7.1: Network applications

38

are not sensitive to relative delay or time and are buffer tolerant. The packet
drops/duplicates/reordering is managed by the network protocol below and
has no influence to the applications themselves.

Real time applications such as audio and video streaming are greatly
affected by latency and packet loss. Since they are only one-way and not
interactive, buffering is tolerated. With interactive applications like Voice
Over Internet Protocol, Voice conference and chat, buffering is not tolerated.
As real time applications merge with traditional data services on the IP
network, it becomes more critical for networks to provide minimum latency
and packet loss. This is especially with wireless networks the case. These
real time applications need to be tested in combination with various network
conditions.

7.2 Network Prototyping

Network devices can not always be tested by software simulators. A Circuit
Emulation Adapter (CEA) is an example device which can not be simulated
in its final hardware version. CEA’s are used for example in city networks.
Using a trace-based network emulator with traces from network probing
in a same network environment, enables network emulation with the same
condition as in real world.

Competitor’s devices are often only available as ”black boxes”. Exact
specifications for simulation are often unavailable. Therefore, testing by a
network emulator is required to compare such devices or demonstrate the
differences.

7.3 Protocols

Protocols for reliable data transport, real-time data, routing, peer-to-peer
file sharing depend on the underlying network infrastructure. Network em-
ulation enables the possibility to test protocols under various network con-
ditions. It is possible to optimize protocols (i.e. wireless protocols) and test
them under exactly the same conditions.

39

Chapter 8

Conclusion

This thesis describes the enhancement of NIST Net with a trace reader
extension. The enhanced NIST Net is a fully-fledged layer 3 network emu-
lation tool, implemented on top of the original NIST Net and Linux. It is to
say that the emulator can handle several parallel E1 Voice streams, what is
requested to test sensitive Voice-over-IP applications. It is able to emulate
statistically correct network dynamics in a flexible way, especially long-range
dependence. Packet delays, drops, and duplicates can be applied based on
preloaded trace data, which is offline generated from real traces, simulation
traces, or calculus traces. The performance evaluation which consisted of
a maximum performance test and delay precision tests under different con-
ditions, proved the emulator as working correctly and being able to handle
the requested precision and maximal packet rate.

40

Chapter 9

Further Work

It is proposed that a further work would be to redesign NIST Net so that it
is able to handle packets already in layer 2. This would enhance speed, flex-
ibility, and allows usage of a wider area including layer 2 protocols like for
example the spanning tree algorithm, that could be optimized with timers
fitting a given network. An enhancement in speed results because the over-
head of the packet processing is smaller. Layer 3 headers stay unchanged
in the packets and have no influence. However, a flow-based layer 2 packet
handling needs major changes to the NIST Net implementation. This in-
cludes

• change the hook where the packet munger function is called

• change all structures, hash tables functions, and the flow table to use
MAC addresses instead of IP source/destination addresses

• adapt the command line interface

• change the reentering point where the packets are sent back to the
Linux networking code

If all functions that determine the address of the packets are cleared out,
the porting is simpler. Not like in layer 3, an emulator in layer 2 doesn’t
need the ability to differentiate flows if it is running as a bridge because
there are usually no layer 2 flows.

The timer used by NIST Net uses a granularity of 121µsec, which is
sufficient for applications like Voice-over-IP but may not suffice for more
sensitive applications to real time. In combination with the timer, NIST
Net could be ported to a real time Linux environment which allows much
higher precision and suppresses scheduler and interrupt outliers as seen in
the plots. However, a real time Linux has a different architecture and needs
the porting of NIST Net’s kernel module to the real time API. The expected
precision on a real time Linux is between 3 and 20µsec.

41

A port to Linux kernel 2.6 involves the adaption to the new kernel module
behavior in kernel 2.6. Kernel 2.6 comes with a different TCP/IP stack which
denotes also a change to the NIST Net kernel module. A third point is the
new behavior of the scheduler. The preemption that also can occur within
the kernel might require changes in the module.

42

Appendix A

Tools

This chapter describes helper tools to convert files to be used as trace files
or that can be used for debugging. Also tools to gather statistics can be
found in this chapter.

A.1 txt2bin

Usage: txt2bin input file output file

txt2bin converts an ASCII input file with a signed integer value on each
line in a binary file that can be used as a trace file.

A.2 bin2txt

Usage: bin2txt input file

bin2txt reads files that have been created with txt2bin. The output is hu-
man readable and can be used for debugging purposes. It splits up the 32
Bit integer value in the two control bits and the remaining 29 bits for the
delay value. The values are presented in integer format. A human readable
binary output is also provided for base debugging purposes.

A.3 bindump

Usage: bindump input file

bindump simply shows a human readable binary output and the correspond-
ing integer value.

43

A.4 headgen

Usage: headgen head delay

headgen can be used before converting values with txt2bin. txt2bin takes
the values as integer, which have besides the delay values also information
about drop, or duplicate. To triplicate packets, use duplicate twice in a row.
See figure 5.3 for information about coding.

A.5 pps

Usage: pps

pps shows every second the amount of packet that passes NIST Net. This
tool was used to determine the maximum amount of packets per second that
NIST Net can process.

44

Appendix B

Additional Plots

This appendix includes all plots and their mathematical calculations of the
delay error plots like average, standard deviation, minimum and maximum,
listed in table B.1.

Figure Test Avg. Std. Min Max

B.2 NIST Net off 2.22 2.05 0 540

B.3 Delay 0µsec 2.20 2.87 0 589

B.5 Delay 121µsec -60.65 36.19 -121 488

B.7 Increasing, decreasing 58.32 62.47 -96 305

B.9 Increasing, decreasing 59.49 57.87 -95 635

B.11 Increasing, decreasing 67.84 60.66 -85 647

B.13 Network trace -3.50 13.21 -61 582

B.15 Network trace * 10 -7.44 51.70 -61 575

B.17 Network trace * 100 72.47 50.28 -60 298

B.19 Network trace * 1000 77.78 50.75 -53 653

B.21 Network trace peak 73.26 49.96 -114 297

Figure B.1: Mathematical figures for the difference plots

45

Figure B.2: NIST Net disabled - IP forwarding delay

Figure B.3: NIST Net delay set to 0µsec - IP forwarding delay

46

Figure B.4: NIST Net delay set to 121µsec (1 tick) - Delay config

Figure B.5: NIST Net delay set to 121µsec (1 tick) - Delay error

47

Figure B.6: Pattern - 10 packets per 121µsec raise - Delay config

Figure B.7: Pattern - 10 packets per 121µsec raise - Delay error

48

Figure B.8: Pattern - 10 packets per 122µsec raise - Delay config

Figure B.9: Pattern - 10 packets per 122µsec raise - Delay error

49

Figure B.10: Pattern - 1 packet per 1µsec raise - Delay config

Figure B.11: Pattern - 1 packets per 1µsec raise - Delay error

50

Figure B.12: Trace from network probing (1) - Delay config

Figure B.13: Trace from network probing (1) - Delay error

51

Figure B.14: Trace from network probing (1) multiplied by 10 - Delay config

Figure B.15: Trace from network probing (1) multiplied by 10 - Delay error

52

Figure B.16: Trace from network probing (1) multiplied by 100 - Delay
config

Figure B.17: Trace from network probing (1) multiplied by 100 - Delay error

53

Figure B.18: Trace from network probing (1) multiplied by 1000 - Delay
config

Figure B.19: Trace from network probing (1) multiplied by 1000 - Delay
error

54

Figure B.20: Trace from network probing (2) - Delay config

Figure B.21: Trace from network probing (2) - Delay error

55

Appendix C

Assignment

Objectives

The overall objective is to develop a trace-based network emulator for (i) IP
networks and (ii) Ethernet-based networks that enhances the Linux kernel.
To achieve this objective, we suggest to enhance and modify NIST Net.
Then, the objectives of this thesis become

• reengineering the implementation of NIST Net, i.e. figuring out
how NIST Net intercepts the protocol stack,
how it accesses the inverse cdf table to generate packet delay values,
and how it employs timer interrupts and queue structures to replay
delayed IP packets.

• modifying the generation of delay values from accessing an inverse cdf
table to accessing values from previously loaded trace. The modifica-
tion should be capable to handle loss (and reordering) events as listed
in the trace.

• enhancing NIST Net for trace-based network emulation on the layer 2
(Ethernet).

Tasks

• Get familiar with concept and implementation of NIST Net. Read [1],
review NIST Net’s web pages (http://dns.antd.nist.gov/nistnet),
subscribe the mailing list, and go through all README files that come
with the NIST Net software package.

• Install NIST Net on Debian Linux. Package and kernel configuration
files can be obtained from the advisor.

56

• Identify and review relevant parts of NIST Net’s code, e.g. review how
NIST Net writes data from user space to kernel space and how NIST
Net accesses the table in kernel space.

• Document NIST Net current implementation and make suggestions on
how to implement trace-based emulation on the IP layer.

• Document your implementation

• Review the protocol stack in Debian.

• Make suggestions on how trace-based Layer 2 (Ethernet) network em-
ulation can be added to NIST Net.

• Implement your suggestions and document your implementation.

Deliverables and Organization

• If possible, student and advisor meet or telephone on a weekly basis to
discuss progress of work and next steps. If problems/questions arise
that can not be solved independently, the student should not hesitate
to contact the advisor anytime.

• At the end of the third week, a detailed time schedule of the semester
thesis must be given and discussed with the advisor.

• In regular intervals (e.g. every two or three months) intermediate
reports are due. These reports are linked to short presentations of 15
minutes to the professor and the advisor. In these presentations, the
student has to discuss major aspects of the ongoing work including
results, problems, and remaining work.

• At the end of this thesis, a presentation of 15 minutes must be given ei-
ther in teleconference or in the communication systems group meeting.
The presentation should carefully introduce settings and background
of the work. Moreover, it should contain an overview of the major
results and conclusions from the work.

• We encourage to write all reports in English. However, reports can
also be written in German. The final report must contain a summary,
the assignment and the time schedule. Its structure should include an
introduction, a methods/design section, a results section and a conclu-
sion section. Moreover, the final report should include a complete doc-
umentation of all produced software. Related work must be correctly
referenced. See http://www.tik.ee.ethz.ch/~flury/tips.html for
more tips on thesis writing. Three hard copies of the final report must
be delivered to TIK.

57

• Any software which is produced in relation with this thesis needs to be
delivered before ending the thesis. This includes all source code and
a documentation. The source code may then be published as open
source. Moreover, the PDF and the source code employed to generate
the final report also have to be delivered. This includes data to draw
the figures Preferred format for delivery is a CDROM.

58

Appendix D

Timetable

Week Subject

1 Related work
2 Reverse engineering NIST Net, documentation
3
4
5 Design evaluation, documentation
6
7
8
9 Implementation proof of concept

10 Intermediate report
11
12 Implementation of concept
13
14
15 Vacation
16
17 Intermediate report
18
19 Performance tests
20
21
22
23 Documentation
24 Documentation
25 Presentation, revise documentation
26 Reserve

59

60

Bibliography

[1] Mark Carson and Darrin Santay.. NIST Net: a Linux-based network

emulation tool, Computer Communication Review (ACM SIGCOMM),
33(3):111-126, 2003.

[2] Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Mmap

[3] Procfs guide. http://www.kernelnewbies.org/documents/kdoc/procfs-
guide/lkprocfsguide.html

[4] Luigi Rizzo. Dummynet: a simple approach to the evaluation of network
protocols. ACM Computer Communication Rview, 27(1):31-41, 1997.
http://citeseer.ist.psu.edu/rizzo97dummynet.html

[5] ONE - the Ohio Network Emulator. http://masaka.cs.ohiou.edu/one/

[6] URL. Ethereal - A Network Protocol Analyzer.
http://www.ethereal.com, 2004.

[7] MIL3 Inc. Opnet modeler, v3. 1996.

[8] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidenmann, A. Helmy, P.
Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu. Advances in
Network Simulations. IEEE Computer, May 2000.

[9] Raj Jain, The art of computer systems performance analysis, 26, 1991.

[10] Rainer Baumann, Ulrich Fiedler, TIK Report 217, 2005.

61

